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Abstract

Numerical experiments have been performed in order to investigate the convection in an enclosure of aspect ratios 5:1:1.3 subject to a
horizontal temperature gradient and a longitudinal sound field. The governing equations are solved by a spectral element method. Dif-
ferent flow structures appear when increasing (or decreasing) the Grashof number. Without acoustic field (acoustic Froude number
Fr = 0), a hysteresis occurs connected to a first steady bifurcation with breaking of symmetry, but for Fr 5 0, no hysteresis is observed
as this symmetry is no more effective. The further transition to oscillatory flow is found to be stabilized by the acoustic field. Depending
on Fr, this transition can occur with or without the breaking of the left–right symmetry.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

It is now well known that a steady vortex flow can be
induced by sound wave propagation through a fluid. This
effect is called acoustic streaming. There are two types of
acoustic streaming: Eckart streaming and Rayleigh stream-
ing [1,2]. In the former, the Reynolds stresses arise within
the main body of the fluid when an ultrasonic beam propa-
gates into it. In the latter, the stresses act in the Stokes
shear-wave layer that forms at a solid boundary. Extensive
studies have been carried out to study Eckart streaming.
But there are fewer studies about Rayleigh streaming,
mainly experiments and analytic studies, and very few
numerical studies already considered the coupled effect of
Rayleigh streaming and thermal convection, despite its
interest for applications on the control of thermally induced
flows and heat transfers.
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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In 1848, Rayleigh was the first to analytically study the
streaming pattern when a standing wave is applied between
two parallel plates [3]. For this type of acoustic streaming,
the flow, originated in the Stokes layer, is due to the inter-
action between the inertia and viscosity forces, but the mag-
nitude of the velocity is independent of the viscosity [4,5].

Some researchers experimentally studied the Rayleigh
streaming and its effect on natural convection. Concerning
Rayleigh streaming alone, Arroyo [6] used particle image
velocimetry and stereoscopy to measure the three-dimen-
sional velocity field caused by acoustic waves. He obtained
good comparisons between the measured boundary velocity
and that deduced through a model from pressure measure-
ments. Campbell [7] reviewed the application of laser Dopp-
ler anemometry and particle image velocimetry to the
measurement of acoustic streaming, and gave the velocity
map generated by acoustic streaming. Concerning the effect
on natural convection, Richardson [8] used the shadow-
graph technique to observe a heated horizontal circular
cylinder subjected to transverse horizontal or vertical sound
fields. The observations confirmed the local changes in
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Nomenclature

A amplitude for the bifurcation diagrams
Ax aspect ratio along the longitudinal x direction
Az aspect ratio along the transverse z direction
c0 speed of sound
ds elementary surface
dv elementary volume
ey unit vector of the y reference axis
F force
Fr acoustic Froude number
g gravity
Gr Grashof number (Gr ¼ bgD�T H3=ðAxm2Þ)
Grold, Grnew successive values of Gr used in the compu-

tations
H height of the cavity (along y)
k = x/c0 wave number of the sound wave
L� characteristic length
L length of the cavity (along x)
n superscript indicating the time step
Nu Nusselt number
p dimensionless pressure
p1 amplitude of the acoustic pressure
Pxy, Pxz and Pyz principal middle planes
Pe Peclet number
Pr Prandtl number (Pr = m/j)
Re Reynolds number
Rs streaming Reynolds number
R̂s streaming Reynolds number defined by Stuart

[18]
^̂Rs streaming Reynolds number defined by Vainsh-

tein [14,16]
S symmetry with respect to Pxy plane (left–right

symmetry)
Sr p rotational symmetry about the z 0-axis
Surf transverse section of the cavity
t time
T dimensionless temperature
Tc dimensionless temperature imposed at the left

cold wall

Th dimensionless temperature imposed at the right
hot wall

�T c temperature imposed at the left cold wall
�T h temperature imposed at the right hot wall
Tfm mean fluid temperature
U � characteristic velocity
~V dimensionless fluid velocity vector
Vx = u, Vy = v and Vz = w components of the dimen-

sionless fluid velocity
v0 ¼ 3V 2

0

8c0
amplitude of the steady slip velocity

V0 amplitude of V 0

Vs steady slip velocity generated by the acoustic
wave

V 0 velocity fluctuation due to the acoustic standing
wave

Vol volume of the cavity
W width of the cavity (along z)
x, z horizontal reference axes
y vertical reference axis
z 0 middle transverse axis parallel to z

Greek symbols

b thermal expansion coefficient of the fluid
d ¼

ffiffiffiffi
2m
x

q
acoustic boundary layer

DGr step in Gr

D�T ¼ ð�T h � �T cÞ applied temperature difference
j thermal diffusivity of the fluid
k sound wavelength
$ nabla operator
m kinematic viscosity of the fluid
x angular frequency of the sound wave
o
on normal derivative
q fluid density
q0 reference fluid density
h dimensionless time
e maximum variation between time steps
e0 criterion for steady state convergence
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boundary layer thickness and heat transfer, and provided
new evidence of the progressive splitting of the rising plume
with a horizontal sound field. Matsumura [9] investigated
the influence of a sound field on the natural convective heat
transfer from vertical flat plates, and indicated that the
width of the plates and the frequency of the sound waves
played an important role on heat transfer. Engelbrecht
[10] studied the influence of acoustic waves on the transition
from laminar to turbulent flow in the boundary layer
along a heated vertical flat plate, and gave the relationship
between the sound frequency at which transition occurred
and the critical Grashof number. Kawahara [11] used a
CCD camera to measure the evolution of the surface shape
of a sphere layered with a volatile solid substance and
submitted or not to an ultrasonic acoustic field (levitation
purpose). They indicated a major influence of acoustic
streaming on sublimation for strong acoustic fields. Based
on the steady state technique, Gopinath [12] measured the
convective heat transfer from a heated cylinder in an intense
acoustic field, and identified two distinct flow regimes. One
is the laminar attached flow regime which shows the
expected square root dependence of the Nusselt number.
Another is an unstable regime in which vortex shedding is
prevalent, contributing to higher heat transfer rates.

Some theoretical works were also carried out to study
the fluid flow and the heat transfer caused by the
sound field. Starting from the Navier–Stokes equations,
Westervelt [5] obtained a general equation governing the
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Fig. 1. Schematic diagram of the studied situation and coordinate system.
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generation of vorticity. A specialization of the vorticity
equation to the case of solenoidal first-order motion leads
to the generating term employed by Rayleigh and Schlich-
ting, and a specialization to the case of irrotational first-
order motion leads to the generating term employed by
Eckart. De Vahl Davis [13] considered the influence of
acoustic field on buoyancy and pointed out that horizontal
oscillations increased heat transfer at the bottom of a cylin-
der and vertical oscillations decreased the local heat trans-
fer. Vainshtein [14–16] studied the acoustic streaming and
its effect in different situations. We can mention the theoret-
ical analysis of the effect of acoustic standing waves on the
heat transfer between plates. Relationships were derived
between the averaged Nusselt number and the acoustic Pec-
let number Pe for the cases of Pe� 1 and Pe� 1. Chu [17]
studied the stability of acoustic streaming flow induced by a
small-amplitude surface acoustic wave propagating along
the walls of a confined parallel-plane channel, and indicated
that the critical Reynolds number was smaller than that for
conventional pressure driven flows.

The present work is connected to the technologies of
materials processing (semi-conductors and metallic com-
pounds such as InP, GaAs, In–Sb, Bi–Sb, In–Cd, . . .) by
directional solidification from their melt. In such processes,
the control of the fluid motions induced in the melt is par-
ticularly important and it has then been a main research
objective for the last decade. In this context, the use of ultra-
sound waves is a new promising tool which has already been
shown to be efficient in solidification situations, inducing a
clear decrease of the concentration segregation as men-
tioned by Kozhemyakin et al. [18,19]. Our work will refer
to the horizontal Bridgman crystal growth configuration
with a low Prandtl number fluid (Pr = 0.019, Gallium com-
pounds). We will deal with the influence of the Rayleigh
acoustic streaming on buoyancy driven flows in a parallel-
epipedic side-heated cavity. We will focus on the transition
to oscillatory flows which is known as the threshold for
changes of behaviours, as better heat transfer and mixing
but worse conditions for material processing. The major
concern of our numerical work is to study the evolution
of the flow under different sound fields, to document and
discuss the bifurcations that occur as the Grashof number
is progressively either increased or decreased, and to inves-
tigate the structure of the flows and the changes in heat
transfer. These results are presented and discussed in the
following, after the presentation of the mathematical model
and the numerical methods.

2. Mathematical model

The study focuses on the convective flow in a rectangu-
lar enclosure similar to that used in the experiment of Hof
et al. [20] on the flow damping by magnetic field. The
aspect ratios of the enclosure (Ax,1,Az) are 5:1:1.3, corre-
sponding to dimensionless length (L), height (H) and width
(W), respectively, H being chosen as the reference length.
Constant uniform temperature �T h and �T c (with �T h > �T c)
are imposed at the right and left walls, respectively. The
other walls are assumed to be adiabatic. The standing wave
acoustic field is also applied in the horizontal direction, and
satisfies k = 4L, where k is the acoustic wavelength. The
orthogonal reference axes are x, y and z, and z 0 axis is also
introduced to describe the flow field, as shown in Fig. 1.

2.1. Acoustic streaming model

Let us consider the Reynolds acoustic streaming based
on a standing plane wave in the x direction. With the
classical assumptions for sound propagation, the velocity
fluctuation V 0 due to the acoustic standing wave may be
written as

V 0ðx; tÞ ¼ V 0 cosðkxÞ cosðxtÞ; ð1Þ
where V0 is the fluctuation amplitude, k = x/c0 is the wave
number, x is the angular frequency, c0 is the speed of
sound and t is the time.

The interaction between the acoustic standing wave and
the fluid induces the formation of steady vortex flow near
the walls. A typical situation is when the characteristic
length of the cavity H is far smaller than the sound wave-
length k, and far greater than the thickness of the acoustic

boundary layer d ¼
ffiffiffi
2m
x

q
, i.e.,

d� H � k. ð2Þ
Using the boundary-layer theory with V0 as small parame-
ter [4], approximations at different orders can be obtained.
The first order approximation gives the exponential de-
crease of the velocity V 0 in the acoustic boundary layer
from the value given by (1) to zero at the solid walls. The
second order approximation gives time-independent terms
generating a steady flow in the acoustic boundary layer.
This flow does not vanish outside the boundary layer,
but generate a steady slip velocity [15] given by

V s ¼ v0 sin 2kx with v0 ¼
3V 2

0

8c0

. ð3Þ

The velocity at the edge of the boundary layer, as given by
(3), can be used as a boundary condition to determine the
streaming motion. In practice, the thickness of the acoustic
boundary layer can be regarded as negligible compared
with the characteristic length H of the cavity, and expres-
sion (3) can then be taken as effectively a slip velocity
at the solid walls. Such a boundary condition, called



Table 1
Dimensionless numbers according to different characteristic velocities and
lengths

L* U* Re

1 H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbHD�T

Ax

s ffiffiffiffiffiffi
Gr
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbD�T H 3

Axm2

s

2
V 0

x
V0 R̂s ¼

V 2
0

xm

3
ðH=2Þ2

c0=x
v0

^̂Rs ¼
3V 2

0H2x

32mc2
0

4 H v0 Rs ¼
3V 2

0H
8c0m
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boundary-velocity condition in the following, will be used
in our calculations on the walls parallel to the direction x

of the acoustic beam.

2.2. Governing equations

The fluid is incompressible and assumed to be Newtonian
with constant kinematic viscosity and thermal diffusivity.
Density variations are assumed to be linear with respect to
temperature and restricted to the buoyancy term, as given
by the usual Boussinesq approximation. The convective
motion is then modelled by the Navier–Stokes equations
coupled to an energy equation. We introduce dimensionless
variables by using the following scales: H for length, H2/m
for time,

ffiffiffiffiffiffi
Gr
p

m=H for velocity,
ffiffiffiffiffiffi
Gr
p

qm2=H 2 for pressure,
and ð�T h � �T cÞ=Ax ¼ D�T=Ax for temperature. The use of Ax

in the definition of the dimensionless temperature allows
to define a temperature field with constant temperature gra-
dient (the main force in the system) at diffusive state, inde-
pendently of the aspect ratio Ax. The governing equations
are then:

r � ~V ¼ 0 ð4Þ
o~V
oh
þ

ffiffiffiffiffiffi
Gr
p
ð~V � rÞ~V ¼ �rp þr2~V þ

ffiffiffiffiffiffi
Gr
p

T~ey ð5Þ

oT
oh
þ

ffiffiffiffiffiffi
Gr
p
ð~V � rÞT ¼ 1

Pr
r2T ð6Þ

where the dimensionless variables are the velocity vector ~V ,
the time h, the pressure p and the temperature T. ~ey is
the unit vector in the vertical direction, and the non-dimen-
sional parameters are the Grashof number Gr ¼ bgD�T H 3

=ðAxm2Þ and the Prandtl number Pr = m/j, where m is the
kinematic viscosity and j is the thermal diffusivity.

The thermal boundary conditions at the walls are:

T = � Ax/2 at the left wall, x = 0,
T = + Ax/2 at the right wall, x = 5,
oT/on = 0 at the other walls.

No-slip condition is used at the isothermal endwalls
whereas dimensionless boundary-velocity condition is used
at the other walls (parallel to x) to take into account the
acoustic streaming:

Vx = Vy = Vz = 0 at the left and right walls, x = 0 and
x = 5,
V x ¼ ðRs=

ffiffiffiffiffiffi
Gr
p
Þ sin 2kx ¼ Fr sin 2kx, Vy = Vz = 0 at the

other walls,
where Rs is the streaming Reynolds number and Fr the
acoustic Froude number, which will be discussed in
Section 2.3.

Concerning the initial conditions, the numerical results
obtained at a given Grashof number are successively used
for the computation at a higher or lower Grashof number.
This will be described in Section 2.6.
2.3. Streaming Reynolds number and acoustic

Froude number

The Reynolds number expresses the ratio of the inertial
forces to the viscous forces in the fluid. It is normally
defined as Re = U*L*/m where U* and L* are characteristic
velocity and length. Depending on the choice of U* and L*,
different expressions can be obtained (see Table 1). Con-
cerning buoyancy at high Grashof number, the velocity
rather evolves as

ffiffiffiffiffiffi
Gr
p

, so that a good choice for Re is
Re ¼

ffiffiffiffiffiffi
Gr
p

. Concerning acoustic streaming, different
streaming Reynolds number can be defined. Stuart [21]

and Vainshtein [14,16] respectively used R̂s and ^̂Rs, as
expressed in Table 1. In our case, as we want to use the
same characteristic length L* = H for both the streaming
Reynolds number and the Grashof number, we define
another streaming Reynolds number

Rs ¼
v0H
m
¼ 3V 2

0H
8c0m

; ð7Þ

which is introduced in the dimensionless form of the
boundary-velocity condition deduced from (3).

In order to study the influence of the acoustic streaming
upon the heat transfer, Vainshtein [15] introduced the
acoustic Peclet number,

Pe ¼ 3V 2
0H 2x

32jc2
0

; ð8Þ

with V 0 ¼ p1

q0c0
, where p1 is the amplitude of the acoustic

pressure. This choice is in fact not appropriate for compar-
ing the relative magnitudes of acoustic streaming and ther-
mal convection in our study, as the important parameter of
thermal convection, D�T , is not taken into account. Richard-
son [8] introduced the dimensionless parameter 4R̂s=

ffiffiffiffiffiffi
Gr
p

in
order to study the effects of sound fields on natural convec-
tion from a cylinder. We will define a similar parameter for
our study, namely an acoustic Froude number Fr,

Fr ¼ F acoustic

F buoyancy

¼ Rsffiffiffiffiffiffi
Gr
p ¼ 3V 2

0

8c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgD�T H

p . ð9Þ

This parameter Fr corresponds to the dimensionless form
of the boundary-velocity condition. In this paper, we will
consider three values of Fr: Fr = 0, Fr = 0.316 and Fr =
0.745.
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2.4. Nusselt number

The Nusselt number at the hot wall is calculated in order
to analyze the effect of the acoustic streaming on the heat
transfer:
Table 2
Tests of numerical accuracy with different meshes

36 · 18 · 16 36 · 22 · 20 40 · 24 · 22 44 · 26 · 24

umax 1.252229402 1.256700524 1.263339036 1.263823667
vmax 0.522734125 0.528474957 0.535518412 0.535315766
wmax 0.272877955 0.272346380 0.263011611 0.272855103
Nu 1.330637874 1.330640139 1.330635961 1.330636383

Table 3
Periods and amplitude in the oscillation flow (Fr = 0)

Item Period of Nu (and of T) Amplitude of Nu

Gr Increase Decrease Increase Decrease

53,000 0.0250(0.0499) 0.000472
54,000 0.0248(0.0495) 0.0248(0.0495) 0.001051 0.001051
56,000 0.0244(0.0488) 0.0244(0.0488) 0.002056 0.002056
58,000 0.0240(0.0480) 0.0240(0.0480) 0.003004 0.003004
59,000 0.0238(0.0476) 0.0238(0.0476) 0.003588 0.003588
60,000 0.0236(0.0472) 0.0236(0.0472) 0.004337 0.004337
62,000 0.0232(0.0465) 0.0232(0.0465) 0.006248 0.006248
63,000 0.0230(0.0461) 0.0230(0.0461) 0.007270 0.007270
64,000 0.0457(0.0457) 0.0457(0.0457) 0.010353 0.010353
66,000 0.0899(0.0899) 0.0899(0.0899) 0.016691 0.016691
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Table 4
Periods and amplitude in the oscillation flow (Fr = 0.316)

Item Period of Nu (and of T) Amplitude of Nu

Gr Increase Decrease Increase Decrease

56,000 0.1309(0.1309) 0.1309(0.1309) 0.016808 0.016808
57,000 0.1229(0.1229) 0.1229(0.1229) 0.019590 0.019590
58,000 0.1210(0.1210) 0.1210(0.1210) 0.024839 0.024839
60,000 0.1270(0.1270) 0.1270(0.1270) 0.034339 0.034339
62,000 0.1270(0.1270) 0.1273(0.1273) 0.045518 0.041869

Table 5
Periods and amplitude in the oscillation flow (Fr = 0.745)

Item Period of Nu (and of T) Amplitude of Nu

Gr Increase Decrease Increase Decrease

56,000 0.0222(0.0444) 0.0222(0.0444) 0.001531 0.001531
58,000 0.0217(0.0433) 0.0217(0.0433) 0.006350 0.006350
60,000 0.0212(0.0424) 0.0212(0.0424) 0.010944 0.010944
62,000 0.0207(0.0414) 0.0207(0.0414) 0.015434 0.015434
64,000 0.0203(0.0405) 0.0203(0.0405) 0.019789 0.019789
65,000 0.0200(0.0400) 0.0200(0.0400) 0.021899 0.021899
66,000 0.0198(0.0396) 0.0198(0.0396) 0.023956 0.023956
Nu ¼
� 1

Surf

R
Surf

oT
on ds

�ðT h � T cÞ=Ax
¼ 1

Surf

Z
Surf

oT
on

ds. ð10Þ

The Nusselt number is 1 in the purely diffusive situation.
For oscillatory flows, a mean Nusselt number is calculated
by averaging its value over one period of oscillation.

We also introduce the mean fluid temperature Tfm in
order to discuss changes in the structure of the thermal
convection:

T fm ¼
1

Vol

Z
Vol

T dv. ð11Þ
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Fig. 2. Some parameters during the increase and decrease of the Grashof
number (Fr = 0).
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2.5. Numerical technique

The governing equations were solved by direct numeri-
cal simulation (DNS) with time-stepping, in a three-dimen-
sional domain, using a spectral element method [22]. The
time discretization was carried out by using the high-order
splitting algorithm [23], and the spatial discretization was
obtained by using Gauss–Lobatto–Legendre point distri-
butions. All the simulations were performed with double
precision arithmetic.

2.6. Computational procedure

The occurrence of hysteresis phenomena is sensitive to
the thermal history, so the numerical simulations are
performed by progressively increasing or decreasing the
Fig. 3. Predicted fluid velocity in the

Fig. 4. Predicted fluid velocity in the
Grashof number in successive runs. The first solution is cal-
culated from an initial purely diffusive solution correspond-
ing to a linear temperature distribution along x and no
flow. A solution obtained at Grold is then used as initial
condition to solve the subsequent case at Grnew = Grold +
DGr. The step DGr is DGr = 10n for Grashof numbers in
the range 10n

6 Gr 6 10n+1. Once a great change in Nusselt
number or the transition from steady flow to oscillatory
flow occurs, a refined step of one-fifth of the former DGr

is employed, so as to locate the flow-transition with a better
accuracy. At a bifurcation, the step is moreover halved. In
this paper, the Grashof number is in the range between
1.0 · 103 and 6.6 · 104 . But in the case of Fr = 0.316, the
oscillatory flow loses its periodicity at Gr = 6.4 · 104,
so the calculations were stopped at Gr = 6.4 · 104 in that
case.
Pxy plane in the case of Fr = 0.

Pxz plane in the case of Fr = 0.
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The results are generally presented by views in the prin-
cipal middle planes: the longitudinal vertical plane Pxy, the
longitudinal horizontal plane Pxz and the transversal verti-
cal plane Pyz, as shown in Fig. 1.

Convergence criteria and some key parameters are now
given. The convergence criterion to a steady flow is based
on the absolute variation e for velocity and temperature
between two adjacent time steps n and n + 1 which at least
must be less than e0 = 10�5, i.e.,

e ¼ maxðjV nþ1
x � V n

x j; jV nþ1
y � V n

y j; jV nþ1
z � V n

z j; jT nþ1 � T njÞ
< e0. ð12Þ

The Nusselt number at steady state is calculated from Eq.
(10), and the maximum velocity is the absolute maximum
velocity component over the whole computational domain.
The convergence criterion to an oscillatory flow is based on
the absolute variations for the maximum and the minimum
Fig. 5. Predicted fluid velocity in the
of the Nusselt number in adjacent periods which must be
less than 10�6. The mean Nusselt number at the hot wall
and the mean flow field are calculated by averaging the re-
sults over one period of oscillation, and the maximum
velocity is the maximum value obtained over one period.
3. Validation of numerical results

To ensure that the solutions are not spurious artifacts of
poorly resolved grids, grid sensitivity experiments were car-
ried out for a steady flow calculation at Gr = 37,500 and
Pr = 0.019. Table 2 gives the averaged Nusselt number
and the maxima of the velocity components obtained on
the grid nodes for four different meshes. When the grid is
refined from 36 · 18 · 16 to 36 · 22 · 20, the maxima of
the velocity components agree within 3.6%. Between the
meshes 40 · 24 · 22 and 44 · 26 · 24, the variation of umax
Pyz plane in the case of Fr = 0.
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Fig. 6. Some parameters during the increase and decrease of the Grashof
number (Fr = 0.316).
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is on the fifth digit whereas the difference on vmax is
0.000203, i.e., approximately 0.04%. Only wmax presents a
larger variation, but this is connected to the change of
the grid points position when the number of points in the
transverse z direction is changed from 22 to 24. Due to this
change of the points position with the grid refinement,
there is a difficulty to judge the accuracy from the maxi-
mum velocity on the grid points. The results are in fact bet-
ter than what is thus obtained. It is why it is interesting to
calculate the Nusselt number which is a global quantity.
When the grid is refined from 36 · 18 · 16 to 44 · 26 ·
24, the variation of Nusselt number is on the seventh digit.
And more precisely between the meshes 40 · 24 · 22 and
44 · 26 · 24, the variation is on the eighth digit. Therefore,
the 40 · 24 · 22 mesh is considered as sufficiently fine to
calculate our convective flows.

4. Results and discussion

The results concerning the steady and oscillatory con-
vective flows obtained in the differentially heated parallel-
epipedic cavity (with dimensions 5:1:1.3) under the
influence of a Rayleigh acoustic streaming are now pre-
sented. All the numerical simulations were performed for
Pr = 0.019. This value is taken from the experiment with
gallium of Hof et al. [20]. Three levels of acoustic streaming
influence will be considered corresponding to the Froude
number values Fr = 0, Fr = 0.316 and Fr = 0.745. The
oscillatory flows will be characterized by the period and
the oscillation amplitude of the Nusselt number at the
hot wall and by the period of the temperature at the point
(3.95, 0.928, 0.0094) (see Tables 3–5). The selected point is
an ordinary point, but chosen outside the symmetry planes
and axes in order to avoid particular behaviours. The
determination of the periods and amplitudes is directly
made from the registered signals, and the accuracy is con-
nected to the number of time steps in a period, generally
around 1000. But the key parameter to analyze both the
steady flows and the periodic flows will be the Nusselt num-
ber, which will be averaged for periodic flows.

Henry & Buffat [24] indicated that the steady flow solu-
tions at low Gr in differentially heated parallelepipedic cav-
ity contain two symmetries: one is a reflection symmetry S

with respect to the Pxy plane (left–right symmetry), the
other is a p-rotational symmetry Sr about the z 0-axis shown
in Fig. 1. These symmetries are defined as

S : ðx; y; z; tÞ ! ðx; y;Az � z; tÞ; ðu; v;w; T Þ ! ðu; v;�w; T Þ
and

Sr : ðx; y; z; tÞ ! ðAx � x; 1� y; z; tÞ;
ðu; v;w; T Þ ! ð�u;�v;w;�T Þ.

These symmetry properties will be checked to be valid or
not for the different flows obtained, steady or oscillatory.
For oscillatory flows, mainly the time-averaged flow field
will be considered as in Figs. 3–5, 7–9 and 11–13. We recall
that the steady flows in differentially heated cavities consist
of a long convective loop going up the hot wall, along the
top, down the cold wall, and back to the hot wall along the
bottom. The oscillatory flows correspond either to oscilla-
tions of this loop, or to more localized oscillations inside
the loop, but in any case they will strongly depend on the
broken symmetries.

4.1. Fr = 0

The case Fr = 0 corresponds to the pure buoyancy-
driven convective situation without acoustic streaming.
The solutions obtained when progressively increasing and
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then decreasing Gr are reported in Fig. 2 and Table 3
through the evolution of different characteristics of the
flow. In this figure (as in Figs. 6 and 10) are also given
absolute differences between both solutions obtained at a
given Gr when first increasing Gr and then decreasing it.
As convergence criteria are fixed to 10�5, these differences
are significative (indication of two different solutions) only
when they are clearly larger than this value. The Nusselt
number (Fig. 2(a)) is found to increase when the Grashof
number gets stronger values, reaching an almost linear evo-
lution with Gr for Gr > 40,000. Nevertheless the evolution
of the flow is not so regular as hysteresis phenomena and
transition to oscillatory flows are observed. The oscillatory
flow appears for Gr = 54,000 when increasing Gr whereas it
disappears for Gr = 52,000 when decreasing Gr. There are
Fig. 7. Predicted fluid velocity in the P

Fig. 8. Predicted fluid velocity in the P
then two different solutions for Gr = 53,000, a steady flow
obtained for increasing Gr and an oscillatory flow obtained
for decreasing Gr. The hysteresis is also present at
Gr = 52,000 (Fig. 2(a)) as the steady flow obtained when
decreasing Gr (Nu = 1.510293) is different from that
obtained when increasing Gr (Nu = 1.515512). Some preci-
sions on the flow are given in Fig. 2(b) through the mean
fluid temperature Tfm. Tfm is zero for small Gr when all
the symmetries are effective, but it becomes non-zero when
the flow is oscillatory as well as for the steady state
obtained for decreasing Gr at Gr = 52,000, indicating a
breaking of symmetry in those cases. At last, Fig. 2(c)
shows that umax becomes almost constant for the larger val-
ues of Gr, indicating a variation as

ffiffiffiffiffiffi
Gr
p

for the dimension-
alized velocities in this domain of Gr.
xy plane in the case of Fr = 0.316.

xz plane in the case of Fr = 0.316.



3610 H. Lei et al. / International Journal of Heat and Mass Transfer 49 (2006) 3601–3616
Figs. 3–5 show velocity plots in the principal middle
planes for selected values of Gr in order to more precisely
describe the appearance and disappearance of the oscilla-
tory flow with the hysteresis phenomenon when Gr is suc-
cessively increased and decreased.

– For small Gr, due to buoyancy, the fluid motion is up
the hot wall, across the top, down the cold wall and
returning across the bottom. Four rolls appear at the
corners in the planes Pxz and Pyz, but the fluid flow is
very weak in the middle of the plane Pxz. The flow field,
which is steady, exhibits the p-rotational symmetry Sr

about the z 0 axis and the symmetry S with respect to
the plane Pxy.

– When Gr is increased from 40,000 to 53,000, the flow is
still steady and symmetric but some changes appear. The
flow in the Pxy plane is less parallel inducing some veloc-
Fig. 9. Predicted fluid velocity in the P
ities in the middle of the Pxz plane and a saddle-node
point in the center of the Pyz plane.

– When Gr is increased between 54,000 and 58,000, the
flow becomes oscillatory. In fact this transition is very
slow and the solution first evolves to a steady flow with
a good convergence criterion (e < 10�8) before becoming
oscillatory. The time-averaged flow shown in Figs. 3(d),
4(d) and 5(d), presents now a strong interaction between
the two reverse flows in the center of the cavity visible
in the three main middle planes. Fig. 5(d) also shows
that the symmetry Sr is broken for the time-averaged
flow, but that the symmetry S is still maintained. For
this oscillatory flow, as shown in Table 3, the period
measured on temperature is two times that obtained
for the Nusselt number. The period decreases with the
increase of the Grashof number, whereas the amplitude
increases.
yz plane in the case of Fr = 0.316.
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– When the Grashof number is greater than 64,000, the
period for Nu becomes equal to that for temperature.
When the Grashof number is up to 66,000, a period dou-
bling occurs.

– When Gr decreases from 59,000 to 54,000, the flow still
remains periodic, with periods and amplitudes equal to
that in the Gr-increasing course, as shown in Table 3.
But this oscillatory flow still exists for Gr down to
53,000, which is different from what was observed in
the Gr-increasing course (steady flow).

– When Gr is about 52,000, the flow changed from oscilla-
tory to steady. But this solution is different from that
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Fig. 10. Some parameters during the increase and decrease of the Grashof
number (Fr = 0.745).
obtained in the Gr-increasing course as there is still a
strong interaction between the two reverse flows in the
center of the cavity and the symmetry Sr of the flow is
still broken, as shown in Figs. 3(f), 4(f) and 5(f).

– When Gr is down to 50,000, the symmetry Sr is recov-
ered, and along the further decrease of the Grashof
number, the flow is the same as that in the Gr-increasing
course.
4.2. Fr = 0.316

The case Fr = 0.316 corresponds to a situation with
combined buoyancy-driven convection and acoustic
streaming. The solutions obtained when progressively
increasing and then decreasing Gr are reported in Fig. 6
and Table 4. Table 4 shows that the oscillatory flow
appears for Gr = 56,000 for increasing Gr and disappears
at the same level for decreasing Gr. Moreover, Fig. 6 shows
that there is only one solution for the steady flow or the
oscillatory flow if Gr 6 60,000 because the different quanti-
ties as the Nusselt number and maximum velocity are the
same during the increase and decrease of Gr. This is the
indication that no hysteresis occurs in this case. In fact,
Table 4 shows that some differences occur in the case
Gr = 62,000 when increasing or decreasing Gr, indicating
that there are different oscillatory solutions in this case.

Figs. 7–9 show the sequences of the onset, development
and vanishing of the oscillatory flow under sound field
when increasing and decreasing the Grashof number.

– Figs. 7(a) and 8(a) show that for Gr = 1000 two rolls
appear in the Pxy and Pxz planes, reminiscent of the pure
acoustic streaming flow. In the Pxy plane, the upper roll
is reinforced by the buoyancy flow and then bigger than
the bottom roll. As shown in Fig. 9(a), due to the acous-
tic streaming, the flow does not satisfy any more the p-
rotational symmetry Sr about the z 0 axis. But at
Gr = 1000, the symmetry S about the Pxy plane is well
satisfied.

– At Gr = 10,000, the buoyancy roll is clearly dominant in
the Pxy plane (Fig. 7(b)), acoustic streaming having still
an influence in this plane close to the boundaries, and in
the Pxz plane (8(b)).

– With the increase of the Grashof number, the classical
four rolls of the buoyancy flow in the Pxz plane clearly
appear (8(c)). The flow is also less parallel in the middle
of the Pxy plane than without acoustic streaming (7(c)).

– The oscillatory flow occurs when the Grashof number is
increased up to 56,000. The time-averaged flow field at
this value is quite similar to the steady flow obtained
at Gr = 55,000 indicating a continuity between the
steady and oscillatory states. This time-averaged fluid
flow still keeps the symmetry S about the Pxy plane, as
shown in Figs. 8(f) and 9(f). Table 4 shows a clear
increase of the amplitudes and a slight variation of the
period for the Nusselt number when the Grashof num-
ber is changed from 56,000 to 62,000.



3612 H. Lei et al. / International Journal of Heat and Mass Transfer 49 (2006) 3601–3616
– When the Grashof number is up to 64,000, a non-peri-
odic flow occurs. And when Gr is decreased to 62,000,
a periodic flow is recovered, but different from that
obtained when increasing Gr, as shown by the different
periods and amplitudes for the Nusselt number given
in Table 4.

– For smaller Gr values, the solutions calculated are sim-
ilar to that obtained when increasing Gr.
4.3. Fr = 0.745

The case Fr = 0.745 corresponds to a stronger influence
of acoustic streaming. The solutions obtained when pro-
Fig. 11. Predicted fluid velocity in the P

Fig. 12. Predicted fluid velocity in the P
gressively increasing and then decreasing Gr are reported
in Fig. 10 and Table 5. Table 5 shows that the oscillatory
flow appears at Gr = 56,000 for increasing Gr and disap-
pears at the same level for decreasing Gr. Fig. 10 shows
that in this case a single solution is obtained for a given
Grashof number at least up to Gr = 66,000.

Figs. 11–13 show the sequence of the onset, develop-
ment and vanishing of oscillatory flow with the increase
and decrease of the Grashof number. Except for
Gr = 1000 and 10,000 where the influence of acoustic
streaming is more clearly seen than for Fr = 0.316, the flow
field is generally very similar to that obtained for
Fr = 0.316, which can explain the comparable values
xy plane in the case of Fr = 0.745.

xz plane in the case of Fr = 0.745.



Fig. 13. Predicted fluid velocity in the Pyz plane in the case of Fr = 0.745.
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obtained for the transition to oscillatory states. In fact this
oscillatory transition is very slow for Fr = 0.745 with a first
evolution to a steady flow before the triggering of oscilla-
tions, as was already observed for Fr = 0.

4.4. General discussion

Fig. 14 shows the instantaneous oscillatory flow field in
the three cases, Fr = 0, Fr = 0.316 and Fr = 0.745. In any
case, we have seen that the symmetry S with respect to the
Pxy plane was effective for the time-averaged flow field.
From Fig. 14, we see that this symmetry S is also effective
in the instantaneous velocity field for Fr = 0.316, but is lost
in the instantaneous velocity field for Fr = 0 and Fr = 0.745.
This feature can explain the differences found on the period
of the Nusselt number compared to that of the temperature.
When no symmetry is broken (Fr = 0.316), the Nusselt num-
ber continuously changes during an oscillatory sequence.
But when the symmetry S is broken, two states distant by
half an oscillatory sequence are the symmetric of each other,
and correspond then to the same value of Nu. This explains
why the period for Nu is half the global period of the flow in
these cases.

Concerning the transition from steady flow to oscilla-
tory flow, hysteresis phenomenon occurs for Fr = 0, but
no hysteresis was found for Fr = 0.316 and Fr = 0.745.
Schematic bifurcation diagrams for the different cases are
given in Fig. 15 (the solid lines denote the stable states
and the dashed lines the unstable states). Detailed analysis
of the numerical calculations shows three kinds of transi-
tions for Fr = 0. The first is a transition from a S and Sr

symmetric steady flow directly to an oscillatory flow at
Gr = 54,000 by a stepwise increase of Grashof number.
This oscillatory flow has lost all the symmetries, but for
time-averaged quantities, only the symmetry Sr is broken
whereas the symmetry S is maintained. The second transi-



Fig. 14. Instantaneous flow in the Pyz plane for the three oscillatory cases.
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tion is a transition from the oscillatory flow to a S symmet-
ric steady flow at Gr = 52,000 when decreasing Gr. The last
transition is a transition from a S symmetric steady flow to
the S and Sr symmetric steady flow at Gr = 50,000 when
decreasing Gr. From these observations, a possible scenario
for the transitions would be the existence of a first sub-
critical Sr-symmetry-breaking steady bifurcation and a
super-critical S-symmetry-breaking Hopf bifurcation on
the Sr-asymmetric branches, as shown in Fig. 15(a).
Fig. 2(b) shows the variation of the mean fluid temperature
Tfm for Fr = 0. The mean fluid temperature is zero for the S

and Sr symmetric steady flows, in relation with these sym-
metries. Once the oscillatory flow occurs, Tfm is abruptly
decreased. This phenomenon occurs because, due to the
breaking of the Sr symmetry, the center of the flow field
is a little displaced from the center of the cavity towards
the cold wall, as shown in Figs. 4(d) and (e). An increase
of Tfm could be obtained on the other oscillatory branch
sketched in Fig. 15(a). Indeed, for this branch the breaking
of the Sr symmetry is expected to move the center of the
flow towards the hot wall. We can remark that jTfmj is
decreased when further increasing Gr due to the efficient
mixing related to the oscillatory state.

When the sound field is applied (Fr 5 0), the boundary-
velocity condition breaks the Sr symmetry which cannot be
observed in the flow fields. The steady flows then have only
the symmetry S with respect to the plane Pxy. In the two



H. Lei et al. / International Journal of Heat and Mass Transfer 49 (2006) 3601–3616 3615
cases (Fr = 0.316 and Fr = 0.745), the transition to oscilla-
tory flow occurs directly on this branch, at a super-critical
Hopf bifurcation which is located between 55,000 and
56,000. But for Fr = 0.316, this transition occurs without
breaking of symmetry, whereas for Fr = 0.745, the transi-
tion breaks the remaining S symmetry (Figs. 15(b) and (c)).

Figs. 7 and 11 show that the acoustic streaming enhances
the upper flow of hot fluid and weakens the lower flow of
cold fluid. And the greater is the Grashof number, the stron-
ger is the effect of the acoustic streaming because all the
cases are conducted with a constant acoustic Froude num-
ber. This induces an increase of the mean fluid temperature
Tfm with the increase of the Grashof number during the
steady-flow stage. Once the oscillatory flow occurs, it
induces a phenomenon of mixing which tends to make tem-
perature more uniform in the cavity. In the case Fr = 0.316,
this mixing effect seems not very efficient as only a slow-
down of the increase of Tfm with Gr is observed. But for
Fr = 0.745, the mixing effect is more efficient and induces
a clear decrease of Tfm. The differences observed can be con-
nected to the fact that for Fr = 0.745 the oscillatory flow
occurs with the breaking of the S symmetry which induces
more perturbations in the flow and makes the mixing more
efficient. Such an influence of the oscillatory flow on Tfm

was also observed for Fr = 0, a case where the breaking
of the S symmetry at the oscillatory transition is also
effective.

This study is a first step in determining the influence of
an acoustic field on natural convection in a cavity. It would
be interesting in the future to change the size of the cavity.
Moreover, as the action of the acoustic field is independent
of the electrically conducting nature of the fluid, it could be
also applied to the growth of other materials such as trans-
parent materials with different values of Pr. How these
modifications of Ax, Az, and Pr will change the action of
the acoustic field on convection? A sound answer to this
question cannot be given, particularly when we know that
the flow transitions in heated confined cavities strongly
depend on all these parameters (Wakitani [25]).

5. Conclusion

The natural convection in a differentially heated rectan-
gular enclosure under different acoustic fields has been
investigated numerically by progressively increasing and
then decreasing the Grashof number. The acoustic Froude
number Fr was introduced in order to quantify the effect of
the acoustic streaming on the thermal convection. Without
acoustic influence (Fr = 0), the transition to oscillatory
flow only occurs after a first steady bifurcation with break-
ing of the p-rotational symmetry Sr, and this leads to hys-
teresis phenomena. With acoustic effects (Fr 5 0), the Sr

symmetry does not exist in the flow, leading to the disap-
pearance of the steady bifurcation and of the hysteresis,
and the oscillatory transition is then the first transition.
The threshold for the oscillatory transition is increased
when Fr 5 0, indicating a stabilizing influence of the
acoustic field. This transition occurs for Fr = 0 with break-
ing of the symmetry S with respect to the Pxy plane. This is
also the case for Fr = 0.745, but not for Fr = 0.316. This
breaking of the S symmetry induces particular effects: the
period of the Nusselt number is half the main period of
the flow, and the mean fluid temperature is found to
decrease with the increase of Gr indicating a better mixing
of the flow in this case.

Future orientations of the research will be focused on the
action of the Eckart streaming, with in mind both the stabil-
ization of heated flows for material processing applications
and the increase of heat transfer for cooling devices.
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